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Stone’s formula, which has usually been applied to the calcula-
ion of the g-matrix, is based on a single-configuration treatment.
ere a limited configuration interaction is included to obtain the

xpressions of the principal g values for an orbitally nondegenerate
olecule with spin S 5 1

2. © 1999 Academic Press
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INTRODUCTION

Stone derived a gauge-invariant formula for the princ
values of an orbitally nondegenerate molecule base

ingle-configuration theory (1). Up to now, the formula ha
enerally been applied to calculation of theg-matrix (2–10).

t is well known, however, that the single-configurat
olecular orbital treatment is not reliable for open-s
olecules or the excited states that must be consider

alculating EPR parameters. Configuration interaction
een proved to be an effective method for coping w
xcited states or ground states with open shells (11–19). In
rder to use CI treatment in calculation of theg-matrix, a
ew formula must be established based on multi
onfiguration wave functions. From Stone’s gauge-invar
pin Hamiltonian, here we deduce the multiple-config
ion expressions for the principalg values of a molecule i
n orbitally nondegenerate state withS 5 1

2.

STONE’S PERTURBATION THEORY

According to Stone’s perturbation theory (1), the gauge
nvariant spin Hamiltonian is given by

* 5 E0 1 2bH z S 1 P0*2P0 2 O
nÞ0

P0*1Pn*1P0

En 2 E0
. [1]

he meanings of all symbols used in this paper are t
rom Stone (1) except when specially indicated. The seco
rder quantities in the magnetic field (i.e., quantities inH 2)

1 This work was supported by the National Natural Scientific Foundatio
hina and the Natural Scientific Foundation of Fujian Province.
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ake no contribution to theg-matrix; therefore,P0* 2P0 is
eft as

e

2\c O
m,m9

u0, m&^0, muO
i ,k

~d i z r ki d ab 2 r ki
a di

b!

3 jk~r ki! H aSi
bu0, m9&^0, m9u, [2]

here the summation convention is assumed for all G
uperscripts. For the last term of Eq. [1], we ignore the q
ities in H 2 for the same reason as above and the second-
pin–orbit coupling terms, which cannot separate the leve
spin doublet,2 and obtain

P0*1Pn*1P0 5 2b O
m,m9

u0, m&^0, muO
i

l 9i z H un, m&

3 ^n, m9uO
i ,k

jk~r ki!l ki z Siu0, m9&^0, m9u. [3]

s the coordinate axes can be chosen to makegab diagonal, only
he principal values ofgxx, gyy, and gzz need calculating. Fo
implicity, we only give the detailed process for calculatinggzz.
he expressions forgxx andgyy can be obtained in the same w
When onlygzz is considered, the terms of interest in Eq.

an be collected as

bgzzH zSz 5 2bH zSz 1 P0*2P0 2 O
nÞ0

P0*1Pn*1P0

En 2 E0
, [4]

here

P0*2P0 5
eHz

2\c O
m,m9

u0, m&^0,muO
k,i

~d i z r ki 2 r ki
z d i

z!

3 jk~r ki!Si
zu0, m9&^0, m9u [5]

P0*1Pn*1P0 5 2bH z O
m,m9

u0, m&^0, muO
i

l 9i
zun, m&

3 ^n, m9uO
i ,k

jk~r ki!l ki
z Si

zu0, m9&^0, m9u.

[6]
f

2 See Eqs. [54]–[60] in Section 4 of Stone’s paper (1).
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75g-MATRIX BASED ON CONFIGURATION INTERACTION AND STONE’S FORMULA
lthough the expression [4] is gauge-invariant,P0* 2P0 and
0* 1Pn* 1P0 are not gauge-invariant by themselves, sincd

s the position vector of the electron relative to some arbit
rigin, andl* is the angular momentum about the origin od.

n order to get a complete gauge-invariant expression, we
ewrite Eqs. [5] and [6].

Because of spin symmetry, only the excited states withSz 5
and S2 5 1 can be mixed into the ground state; theref
nly the terms withm 5 m9 5 1

2 are left in the first sum of Eq
6]. Thus

P0*1Pn*1P0 5 2bH z^0uO
i

l 9i
zun& z ^nuO

i ,k

jk~r ki!l ki
z Si

zu0&.

[7]

f the state wavefunctions of̂nu (n 5 0, 1, 2 . . .) were
xpressed by single configurations, Eqs. [1]–[7] would lea
tone’s formula (1). When CI treatment is involved, the wav

unctions are represented by multiconfigurations as

^nu 5 O
I

AnIF I, [8]

here each configurationF is approximated as a Slater det
inant. Substituting [8] into [7], we obtain

P0*1Pn*1P0 5 2bH z O
I ,J,K,L

A0IAnJAnKA0L

3 O
k

^F IuF1uFJ&^FKuF2uFL&, [9]

here

F1 5 O
i

l 9i
z [10]

F2 5 O
i

jk~r ki!l ki
z Si

z. [11]

FIG. 1. Single excitations for the doublet states of systems withS 5 1
2, w

etermined in the reference state calculation.
y

st

,

o

ince theg-matrix of an orbitally nondegenerate molecule w
5 1

2 is dominantly contributed by the doublet ground state a
ew low-lying excited doublet states, it is usually conside
ufficient to include only the single excitation in LCI (limit
onfiguration interaction), and the number of configurations t
reated in the CI matrix is limited by a preset energy crite
9–10 eV) (15). The ground reference state is usually calcul
y the Hartree–Fock method, and the excited states are gen
y LCI among configurations formed by single-electron excita

rom occupied MOs into unoccupied or virtual orbitals de
ined in the reference state calculation. There are five typ

elevant doublet states shown in Fig. 1.
By comparison of the initial configuration (^F Ju or ^F Lu)

nd the end configuration (^F Ju, ^F Lu) in ^F I uF 1uF J& and
FKuF 2uF L& we classify the excitation-matrix elements i
hree cases based on Fig. 1:

(a) no excitation (the initial configuration is the same as
nd);
(b) double excitation (the initial and the endF are related b

ouble excitation);
(c) single excitation (the initial and the endF are related b

ingle excitation).

First, let us calculatêF I uF 1uF J& according to the thre
ases above.

a9) No Excitation

According to the symmetry principle, only the orbita
ondegenerate excited configurations can be included i
round state; thus the total angular momentum of the mole
veraged over the ground state is zero, that is to say
iagonal elements of theF 1 matrix are zero.

b9) Double Excitation

The F 1 matrix element can be expressed as the summ
ver one-electron operator matrix elements,

^F IuO
i

l 9i
zuFJ& 5 O

i

^F Iul 9izuFJ&. [12]

ree, f, andh correspond to empty, filled, and half-filled MOs (spin–orbit
he
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76 LI ET AL.
ince a single-electron operator cannot excite two electro
ne time, every term on the right-hand side of [12] is zero;

^F IuF1uFJ& 5 0.

c9) Single Excitation

Figure 2 indicates a single excitation by which ab electron
ms 5 2 1

2) is transited toq from p, which is symbolized a
23 q2. With the use of the determinantal symbol detu. . .u,3

e write ^F I uF 1uF J& as

K 2 z ^detu· · ·p1q1p2u uF1udetu· · ·p1q1q2u&, [13]

here

K 5
1

Ît!
,

ndt is the number of total electrons in the molecule. Expa
ng the determinant, we get (t!) 2, adding terms of the typ
each way of ranking gives a similar term)

K 2^. . .p1~t 2 2!q1~t 2 1!

3 p2~t!uF1u. . .p1~t 2 2!q1~t 2 1!q2~t!&. [14]

riting [14] as the sum of one-electron operator matrix
ents, we have as thetth electron’s matrix element

K 2^. . .p1~t 2 2!q1~t 2 1! p2~t!

3 ul 9tzu. . .p1~t 2 2!q1~t 2 1!q2~t!&. [15]

herefore, after expanding the determinantal matrix eleme
13], we obtain t! t! t! added terms of one-electron mat
lements of the type [15], of which the nonzero terms are t
atisfying the following two conditions:

ConditionA. The ranks of the electrons are equal for b
ides of the operator.
Condition B. The one-electron operator must act on

xcited electron.

3 As a regulation for the symbol detu . . . u, the MOs are arranged in order
hat the MOs with no electron excitation are ranked in the front and the
rder is followed for both sides of the operator; the MOs in which the elec
re excited in or out are ranked at the end.

FIG. 2. Single excitation forp2 3 q2 (F I andF J differ only in orbitals
pu and ^qu).
at
s

-

-

of

se

If the orthonormality constraint̂i u j & 5 d ij is assumed fo
ll MOs, the remaining terms of the type [15] can be writ

K 2^p2~i !ul 9izuq2~i !&, [16]

herei represents the excited electron, which is not iden
or different terms. Because of the indistinguishability of
lectrons, [16] is replaced with

K 2^p2ul 9 zuq2&. [17]

ince the angular momentum operator does not act on the
unctions, [17] is equal to

K 2^pul 9 zuq&. [18]

s a result, all the remaining terms of [15] have the s
alue. There aret! ways to rank the electrons, so there art!
erms of the type [14] satisfying ConditionA, of which only
ne term of the type [15] satisfies ConditionB. Thust! terms
f the type [18] are left in̂ F I uF 1uF J&. Since

K 2 5
1

t!
,

^F IuF1uFJ& 5 ^pul 9 zuq&.

Extending the excitation shown in Fig. 2 to the general c
6 3 j 6, we have

^F IuF1uFJ& 5 ^i ul 9 zuj &.

All possible matrix elements of̂F I uF 1uF J& constructed
rom the five types of configurations given in Fig. 1 are lis
n Table 1.

Next we must calculatêFKuF 2uF L&. In the same way, it ca
e calculated according to cases (a), (b), and (c).

a0) No Excitation

According to Fig. 1, there are two kinds of no-excitat
atrix elements categorized by the number of the half-fi
Os, which are shown in Fig. 3.
Let us deal with Fig. 3a first. WritêFKuF 2uF L& in the

eterminantal form,

K 2 z ^detu f11f12. . . fn1fn2h11h21h32u

3 uF2udetu f11f12. . . fn1fn2h11h21h32u&. [19]

xpand [19] to the sum oft! terms of the following type:

e
s
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K 2^ f11~1! f12~2!. . .h11~t 2 3!~t 2 2!h21~t 2 1!h32~t!

3 uF2u f11~1! f12~2!. . .h11~t 2 3!~t 2 2!

3 h21~t 2 1!h32~t!&. [20]

rite [20] as the sum of one-electron operator matrix
ents, and we get thei th electron’s element,

TAB
The Calculatio

Configuration type Excitations for single configuratio

I (F I) J (F J) F I F J

0 0 No excitation No excitatio
0 1 No excitation f i2 3 h2

0 2 No excitation h1 3 el1

0 3 No excitation f i2 3 el2

0 4 No excitation f i1 3 el1

1 1 f i2 3 h2 f j2 3 h2

1 2 f i2 3 h2 h1 3 el1

1 3 f i2 3 h2 f j2 3 el2

1 4 f i2 3 h2 f j1 3 el1

2 2 h1 3 el1 h1 3 ek1

2 3 h1 3 el1 f i2 3 ek2

2 4 h1 3 el1 f i1 3 ek1

3 3 f i2 3 el2 f j2 3 ek2

3 4 f i2 3 el2 f j1 3 ek1

4 4 f i1 3 el1 f j1 3 ek1

a 2e indicates the excitations of more than two electrons.

FIG. 3. Two kinds of no-excitation matrix element.
-

K 2^ f11~1! f12~2!. . .h11~t 2 3!~t 2 2!h21~t 2 1!h32~t!

3 ujk~r ki!l ki
z Si

zu f11~1! f12~2!. . .h11~t 2 3!

3 ~t 2 2!h21~t 2 1!h32~t!&. [21]

xpression [21] is nonzero only when the electrons are rank
he same order on both sides of the operator (ConditionA). With
o electron excitation, ConditionB does not work here. Thus t
um over electrons can be replaced by a sum over orbital
ootnote 2), and [20] is equal to

K 2 O
i

^i 6ujk~r k!l k
zSzui 6&,

here^i 6u indicates a certain MO (spin–orbital function w
s 5 6 1

2). Separate the spin and orbital variables, and
xpression above is equal to

K 2 O
i

6 Sz^i ujk~r k!l k
zui &. [22]

he filled orbitals do not contribute, since the spin parts ca
nd we are left with

^FKuF2uFL& 5 ^h1ujk~r k!l k
zuh1& 1 ^h2ujk~r k!l k

zuh2&

2 ^h3ujk~r k!l k
zuh3&. [23]

1
of ^FIzF1zFJ&

a

Electron excitations
for ^F I uF 1uF J&

^F I uF 1uF J&
5 ^pul 9 zuq& Category

No excitation 0 a
f i2 3 h2 ^ f i ul 9 zuh& c
h1 3 el1 ^hul 9 zuel& c
f i2 3 el2 ^ f i ul 9 zuel& c
f i1 3 el1 ^ f i ul 9 zuel& c
f j2 3 f i2 ^ f i ul 9 zuf i& c
2e 0 b
i 5 j : h2 3 el2 ^hul 9 zuel& c
i Þ j : 2e 0 b
2e 0 b
el1 3 ek1 ^el ul 9 zuek& c
2e 0 b
l 5 k: f i1 3 h1 ^ f i ul 9 zuh& c
l Þ k: 2e 0 b
i 5 j : el2 3 ek2 ^el ul 9 zuek& c
l 5 k: f j2 3 f i2 ^ f j ul 9 zuf i& c
I Þ j and l Þ k: 2e 0 b
2e 0 b
I 5 j : el1 3 ek1 ^el ul 9 zuek& c
l 5 k: f j1 3 f i1 ^ f j ul 9 zuf i& c
I Þ j and l Þ k: 2e 0 b
LE
ns

n

n
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78 LI ET AL.
n the case of Fig. 3b, only one term is left; thus

^FKuF2uFL& 5 ^h1ujk~r k!l k
zuh1&. [24]

b0) Double Excitation

For the same reason mentioned in (b9), there is

^FKuF2uFL& 5 0.

c0) Single Excitation

Assuming the same excitation given in Fig. 2 in (c9), we
etermine in the same way that [21] is left with only one t
hich is relevant with the excitation

^FKuF2uFL& 5 ^p2ujk~r k!l k
zSzuq2&.

eparating the spin and orbital variables, we get

^FKuF2uFL& 5 2Sz^pujk~r k!l k
zuq&. [25]

hen extended to the general cases,p6 3 q6, we have

^FKuF2uFL& 5 6Sz^pujk~r k!l k
zuq&. [26]

TAB
The Calculatio

Configuration type Excitations for single configurations

I (FK) J (F L) FK F L

0 0 No excitation No excitation
0 1 No excitation f i2 3 h2

0 2 No excitation h1 3 el1

0 3 No excitation f i2 3 el2

0 4 No excitation f i1 3 el1

1 1 f i2 3 h2 f j2 3 h2

1 2 f i2 3 h2 h1 3 el1

1 3 f i2 3 h2 f j2 3 el2

1 4 f i2 3 h2 f j1 3 el1

2 2 h1 3 el1 h1 3 ek1

2 3 h1 3 el1 f i2 3 ek2

2 4 h1 3 el1 f i1 3 ek1

3 3 f i2 3 el2 f j2 3 ek2

3 4 f i2 3 el2 f j1 3 ek1

4 4 f i1 3 el1 f j1 3 ek1
ll the possible matrix elements of^FKuF 2uF L& are listed in
able 2.
Substituting^F I uF 1uF J& and ^FKuF 2uF L& into [9], we get

P0*1Pn*1P0 5 2bH zSz O
I ,J,K,L

A0IAnJAnKA0L

3 O
k

^pul 9 zuq&~I ,J!^p9ujk~r k!l k
zuq9&~K,L!

5 2bH zSz O
k

O
I ,J,K,L

A0IAnJAnKA0L^pul 9 zuq&~I ,J!

3 ^p9ujk~r k!l k
zuq9&~K,L!. [27]

quation [27] is a sum of atomk, and each term refers to onejk

nly. In the same way we could writeP0*2P0 as a sum ofk; then
he whole right-hand side of Eq. [4] could be rewritten as the
f k. According to Stone’s argument,4 eachkth term must b

ndependently gauge-invariant, and we could putd 5 r k, l* 5 l k

or the kth term; therefore, the whole expression is gau
nvariant. Since the second-order perturbation termP0*2P0 is
sually negligible compared with the first-order perturba

ermsP0*1Pn*1P0,
5 we omit the tediously long but unnecess

reatment forP0*2P0, and putl* 5 l k directly for P0*1Pn*1P0.
he gauge-invariant expression forgzz is then given by

4 See Eqs. [70] and [71] in Section 4 of Stone’s paper (1).
5 See Section 6 of Stone’s paper (1).

2
of ^FKzF2zFL&

Excitations of electrons
for ^FKuF 2uF L&

^FKuF 2uF L& 5
^puj k(r k)l k

zuq& Category

No excitation ^huj k(r k)l k
zuh& a

f i2 3 h2 2^f i uj k(r k)l k
zuh& c

h1 3 el1 ^huj k(r k)l k
zuel& c

f i2 3 el2 2^f i uj k(r k)l k
zuel& c

f i1 3 el1 ^f i uj k(r k)l k
zuel& c

f j2 3 f i2 2^f i uj k(r k)l k
zuf i& c

2e 0 b
i 5 j : h2 3 el2 2^huj k(r k)l k

zuel& c
i Þ j : 2e 0 b
2e 0 b
el1 3 ek1 ^el uj k(r k)l k

zuek& c
2e 0 b
l 5 k: f i1 3 h1 ^f i uj k(r k)l k

zuh& c
l Þ k: 2e 0 b
i 5 j : el2 3 ek2 2^el uj k(r k)l k

zuek& c
l 5 k: f j2 3 f i2 2^f j uj k(r k)l k

zuf i& c
I Þ j and l Þ k: 2e 0 b
2e 0 b
I 5 j : el1 3 ek1 ^el ul k(r k)l k

zuek& c
l 5 k: f j1 3 f i1 ^f j ul k(r k)l k

zuf i& c
I Þ j and l Þ k: 2e 0 b
LE
ns
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gzz 5 2 2 O
nÞ0

h0~n!

En 2 E0
, [28]

here

h0~n! 5 2 O
I ,J,K,L

A0IAnJAnKA0L z O
k

^pul k
zuq&~I ,J!

3 ^p9ujk~r k!l k
zuq9&~K,L!.

he calculation ofgzz is usually based on the calculation of
atrix elements over basis functions of MOs,

^pul k
zuq& [29a]

nd

^p9ujk~r k!l k
zuq9&. [29b]

xpress the MOs in terms of a linear combination of ato
rbitals,

up& 5 O
k

ux k
~ p!&

uq& 5 O
k

ux k
~q!&, [30]

here x k is an atomic orbital on atomk (unnormalized)
ubstituting [30] into [29a], we obtain

^pul k
zuq& 5 O

k9,k0

^x k9
~ p!ul k

zux k0
~q!&. [31]

e neglect overlap between orbitals on different atoms; th
e ignore all terms in the sum [31] except those for whick0
k9, and therefore [31] can be rewritten as

^pul k
zuq& 5 O

k9

^x k9
~ p!ul k9

z ux k9
~q!&. [32]

ubstitute [30] into [29b] to get

^p9ujk~r k!l k
zuq9& 5 O

k9,k0

^x k9
~ p9!ujk~r k!l k

zux k0
~q9!&. [33]

incej(r ) decreases rapidly with increasingr (j(r ) ; 1/r 3 for
arger ), we can treatj(r ) as effectively zero except near at
; therefore
c

is,

jk~r k! 5 H0 r @ r k

jk r # r k,

herej k is the usual spin–orbit coupling constant for atomk.
hen [33] is replaced with

^p9ujk~r k!l k
zuq9& 5 jk^x k

~ p9!ul k
zux k

~q9!&. [34]

ubstituting [32] and [34] into [28], we obtain

gzz 5 2 2 2 O
nÞ0

3 O
I ,J,K,L

A0IAnJAnKA0L

3

O
k,k9

jk^x k9
~ p!ul k9

z ux k9
~q!&~I ,J!^x k

~ p9!ul k
zux k

~q9!&~K,L!

En 2 E0
. [35]

he relationship betweenp, q and I , J is given in Table 1
hile that ofp9, q9 andK, L is in Table 2.
gxx andgyy can be given by similar expressions.
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