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Stone’s formula, which has usually been applied to the calcula- make no contribution to thg-matrix;2 therefore P,%,P, is

tion of the g-matrix, is based on a single-configuration treatment. |eft as
Here a limited configuration interaction is included to obtain the

expressions of the principal g values for an orbitally nondegenerate e
molecule with spin S = 3. © 1999 Academic Press 2%hC E |01 m)(0, m| E (di-ry 8F — r%dlﬁ)
Key Words: g-matrix; Stone’s formula; configuration interaction; m,m’ ik
doublet states; orbitally nondegenerate state. X Edrig) HeSPFO, m' )0, m'|, [2]

where the summation convention is assumed for all Gree
INTRODUCTION superscripts. For the last term of Eq. [1], we ignore the quar
tities in H? for the same reason as above and the second-orc

Stone derived a gauge-invariant formula for the princip@hin_orbit coupling terms, which cannot separate the levels
g values of an orbitally nondegenerate molecule based Qpin doublet, and obtain

single-configuration theoryl§. Up to now, the formula has

generally been applied to calculation of tipenatrix 2—10). Po¥ P3Py = 28 > |0, m){0, m|2 I+ H|n, m)

It is well known, however, that the single-configuration mm’ i

molecular orbital treatment is not reliable for open-shell . . ,

molecules or the excited states that must be considered in X (n, m \Z Elri)lii - S10, m' )0, m'|. [3]
. . . . . ik

calculating EPR parameters. Configuration interaction has

been proved to be an effective method for coping Withs the coordinate axes can be chosen to nydkeliagonal, only
excited states or ground states with open shdlls-09. In  he principal values ofy®, g”, and g” need calculating. For
order to use CI treatment in calculation of thematrix, a simplicity, we only give the detailed process for calculatigif
new formula must be established based on multiplehe expressions fay* andg” can be obtained in the same way.

configuration wave functions. From Stone’s gauge-invariant\yhen onlyg® is considered, the terms of interest in Eq. [1]

spin Hamiltonian, here we deduce the multiple-configurazn pe collected as
tion expressions for the principaglvalues of a molecule in
an orbitally nondegenerate state wigh= 3. P # P, P,

Bg?H?S? = 2BHS? + Py, P, — >, . [4]
En - EO

STONE’S PERTURBATION THEORY n+o

According to Stone’s perturbation theor{)( the gauge- where

invariant spin Hamiltonian is given by eH?
Po#,Po = 2hc 210, m}O.m| X (di-ry — rid?)

Po¥,P ., Py ki
W= Bot 2BH- S+ PoioPy— 2 g g e [ X &(r)S70, m)(0, | [5]
Pt 1P, 3 1Po = 2BH* 20, m)(0, m[ 3 17n, m)
The meanings of all symbols used in this paper are taken m.m’ i
from Stone () except when specially indicated. The second- X (n, m'| Y &r)l 25790, m' )0, m'|.
order quantities in the magnetic field (i.e., quantitiesHif) i K
(6]
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FIG. 1. Single excitations for the doublet states of systems Bith 1, wheree, f, andh correspond to empty, filled, and half-filled MOs (spin—orbitals)
determined in the reference state calculation.

Although the expression [4] is gauge-invariaRt# ,P, and Since theg-matrix of an orbitally nondegenerate molecule with
P.%,P,% P, are not gauge-invariant by themselves, sidce S= 3 is dominantly contributed by the doublet ground state and
is the position vector of the electron relative to some arbitrafgw low-lying excited doublet states, it is usually consideres
origin, andl’ is the angular momentum about the origincbf sufficient to include only the single excitation in LCI (limited
In order to get a complete gauge-invariant expression, we maetfiguration interaction), and the number of configurations to k
rewrite Egs. [5] and [6]. treated in the Cl matrix is limited by a preset energy criteriot
Because of spin symmetry, only the excited states &jtk  (9—10 eV) (5). The ground reference state is usually calculate
1 andS* = 1 can be mixed into the ground state; therefordy the Hartree—Fock method, and the excited states are genere
only the terms withm = m’ = 1 are left in the first sum of Eq. by LClamong configurations formed by single-electron excitatio
[6]. Thus from occupied MOs into unoccupied or virtual orbitals deter:
mined in the reference state calculation. There are five types

Podt1P,31Po = 2BHY0| 2 17n) - (n| 3 &)l S0, relevant doublet states shown in Fig. 1.

i ik By comparison of the initial configuration®,| or (®|)
and the end configuratio(®,|, (®,|) in (P |F,|P,) and
(Dy|F,|P.) we classify the excitation-matrix elements into
three cases based on Fig. 1:

[7]

If the state wavefunctions ofn| (n = 0, 1, 2...) were
expressed by single configurations, Eqgs. [1]-[7] would lead to (a) no excitation (the initial configuration is the same as th
Stone’s formula ). When CI treatment is involved, the wave-€end);

functions are represented by multiconfigurations as (b) double excitation (the initial and the eddare related by
double excitation);

(n|=> A,®, [8] (c) single excitation (the initial and the eddare related by
| single excitation).

First, let us calculatg®,|F,|®,) according to the three

where each configuratio® is approximated as a Slater deterbases above.

minant. Substituting [8] into [7], we obtain
(@) No Excitation

Podt1PadtiPo = 2BH” X AgAnAnAa According to the symmetry principle, only the orbitally
LKL nondegenerate excited configurations can be included in t

XD (D[ Fy| D (DY Fol L), 9] ground state; thus the total angular.momentum of the molecu

c averaged over the ground state is zero, that is to say, tl

diagonal elements of the, matrix are zero.

where (b") Double Excitation

Fo= 17 [10] The F, matrix element can be expressed as the summatic
' ' over one-electron operator matrix elements,

F,= 2 E(ra) ST [11] <(I)||Z |,iZ|CDJ> = E <q)|||,iz|q)3>- [12]
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g _7 AN If the orthonormality constrainti|j) = §; is assumed for
all MOs, the remaining terms of the type [15] can be written
oo K2p-()1%19-()), [26]
O - O wherei represents the excited electron, which is not identice
FIG. 2. Single excitation fop_ — q_ (@, and®, differ only in orbitals  for different terms. Because of the indistinguishability of all
(p| and(ql). electrons, [16] is replaced with
Since a single-electron operator cannot excite two electrons at K2(p_[1']q.) [17]
one time, every term on the right-hand side of [12] is zero; thus P-4/
(®||F|®j) = 0. Since the angular momentum operator does not act on the s|

functions, [17] is equal to
(c') Single Excitation
Figure 2 indicates a single excitation by whiclB&lectron K%pl|l"¥q). [18]
(m, = — 3) is transited tog from p, which is symbolized as
p_— q_. With the use of the determinantal symbol ¢et|,’

; A result, all the remainin rms of [15] have th m
we write (B |F,|®,) as s a result, all the remaining terms of [15] have the sal

value. There ar¢! ways to rank the electrons, so there &re
5 terms of the type [14] satisfying Conditiof, of which only
K?-(det- - p.q.p_| |Fsdet- - p.q.q_]), [13]1  one term of the type [15] satisfies ConditiBn Thust! terms

of the type [18] are left if®,|F,|®,). Since
where

1
K_W’ t

_ _ (@[F4|Dy) = (p|l"7a).
andt is the number of total electrons in the molecule. Expand-

ing the determinant, we get!f?, adding terms of the type

(each way of ranking gives a similar term) Extending the excitation shown in Fig. 2 to the general case

i. = j., we have
K2<- . -p+(t - 2)q+(t - 1)

D\|F, D, =il 7).
X p_(O|F|. . p.(t — 2)q.(t— Da_(v).  [14] (BilFs[y = (ilI"4D)

Writing [14] as the sum of one-electron operator matrix ele- All possible matrix elements of®,|F,|®,) constructed

ments. we have as theh electron’s matrix element from the five types of configurations given in Fig. 1 are listec
’ in Table 1.
K2(. . p.(t—2)q.(t— 1)p_(t) Next we must calculatéP|F,|® ). In the same way, it can
..Py + -

be calculated according to cases (a), (b), and (c).
X1 pe(t = 2)q.(t — 1)g_(1)). [15]
(&") No Excitation

Therefore, after expanding the determinantal matrix element of ) ) ) o
[13], we obtaint!t!t! added terms of one-electron matrix According to Fig. 1, there are two kinds of no-excitation

elements of the type [15], of which the nonzero terms are thod@trix elements categorized by the number of the half-fille

satisfying the following two conditions: MOs, which are shown in Fig. 3.~ .
N Let us deal with Fig. 3a first. Writd®,|F,|® ) in the
ConditionA. The ranks of the electrons are equal for botReterminantal form,

sides of the operator.
Condition B. The one-electron operator must act on the

excited electron. K2-(deffy. fi_. . .fo.fohyhyhg |

® As a regulation for the symbol det- - |, the MOs are arranged in order so X |F2|dell fiofi. .. fn+fn*hl+h2+h3*‘>' [19]
that the MOs with no electron excitation are ranked in the front and the same

order is followed for both sides of the operator; the MOs in which the electrons

are excited in or out are ranked at the end. Expand [19] to the sum dfl terms of the following type:
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TABLE 1
The Calculations of (®|F,|d®,)
Configuration type Excitations for single configuration
Electron excitations (D||F,| D)

I () J (D)) @, @, for (@|F|®,) = (pll"*|a) Category
0 0 No excitation No excitation No excitation 0 a
0 1 No excitation fi. = h_ fi. = h_ (fil177Ihy c
0 2 No excitation h, — e, h, — e, (hj1"?e)) c
0 3 No excitation f.—e. fi. —e_ (f1"7e) c
0 4 No excitation f. —>e. fi. — e, (fill77le)y c
1 1 f_ —h f.—h. fo—f, CRIURY c
1 2 fi. = h_ h, —e. 2e 0 b
1 3 fi, > h_ fi. > e. i=j.h —>e._ (h|l"?e)) c

i #j: 2e 0 b
1 4 fi. = h_ fi. — e 2e 0 b
2 2 h, —e. h, —e. e. — e. CILEEY c
2 3 h, — e, fio = e 2e 0 b
2 4 h, — e, fi. = e | = k: fi. — h, (177 h) c
| # k: 2e 0 b
3 3 fi. —>e. fi. = e i=j e —e. (ell""ey c
I =k f —f_ CH177f) c
I # jandl # k: 2e 0 b
3 4 fio —>e_ fi, = e 2e 0 b
4 4 fi. — e, fie = € Il =j e, > e. (el|l”?|ew c
=k f. —f, (R c
| #jandl # k: 2e 0 b

# 2e indicates the excitations of more than two electrons.

K2(f1:(1) f,-(2). . .hye(t = 3)(t = 2)hyu(t = Dhy (1)

X |Fol f1, (1) 1 (2). . hy (= 3)(t - 2)
X . (t = Dhs (D).

Write [20] as the sum of one-electron operator matrix el

ments, and we get thi¢gh electron’s element,

hy b__ N
hy _n~___ AN
h A~ Y
S AN AN
h_ 1V AN
Q. =0, =0,
(a) (b)

FIG. 3. Two kinds of no-excitation matrix element.

[20]

KX f14(1) f1(2). . .hy, (t = 3)(t = 2)h,, (t — D)hs (1)

X |&(ra)l ST f1(D) f1(2). . hy(t = 3)

X (t = 2)hyi (t = Dhg_(1)). [21]
%_xpression [21] is nonzero only when the electrons are ranked
the same order on both sides of the operator (Condiipiwith
no electron excitation, ConditioB does not work here. Thus the

sum over electrons can be replaced by a sum over orbitals (s
Footnote 2), and [20] is equal to

K? Z (i |&(rol Sy,

where(i .| indicates a certain MO (spin—orbital function with
m, = = 3). Separate the spin and orbital variables, and th
expression above is equal to

K2 = siilgdrol. [22]

The filled orbitals do not contribute, since the spin parts cance
and we are left with

(D|Fy| D) = (hy|&(r)lElhy) + (hyl&(rlE hy)
— (hgl&(r)l§lhs). [23]
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TABLE 2
The Calculations of (®|F,|®,)

Configuration type

Excitations for single configurations

Excitations of electrons (Dy|F,| D) =

I (k) J(Py) Oy D, for (O |F,|D.) (plérlia Category
0 0 No excitation No excitation No excitation (h|&(r)IFhy a
0 1 No excitation fi. — h_ fi. — h_ —(fil&(r )1 hy c
0 2 No excitation h, - e, h, - e, (hl&(rlile) C
0 3 No excitation fi. —e_ fi. —e. —(f&rylien c
0 4 No excitation fi. — e, fi. — e, (fil&r)ile) c
1 1 f—h f,_ —h. f,o—f. — (R ErlEf) c
1 2 fi. = h_ h, — e, 2e 0 b
1 3 fi. — h_ fi. = e i=jh.—>e_ —(h|&(r)lile) c

i #j: 2e 0 b
1 4 fi. = h_ fi. — e, 2e 0 b
2 2 h, —e. h, — e €. — 6 (e &(rlied C
2 3 h, —e. fi. — e 2e 0 b
2 4 h+ — € fi+ — € I = k: f\+ - h+ <f|‘§k(rk)|l§|h> c
| # k: 2e 0 b
3 3 fio —>e_ fii = ec i=j e —ec —(elédrliled c
=k f_ —f_ — (&I c
I # jandl # k: 2e 0 b
3 4 fio —>e_ fir = e 2e 0 b
4 4 fi, = e. fie = e I =j e, —>e. (el h(rylfled c
=k f. —f, FINrIE) c
I # jandl # k: 2e 0 b

In the case of Fig. 3b, only one term is left; thus

(") Double Excitation

<CDK‘ F2‘¢)L> = <h1‘§k(rk)| ﬂ hy).

[24]

For the same reason mentioned in)(khere is

(c") Single Excitation

<‘I)K|F2|‘b|.> = 0.

Assuming the same excitation given in Fig. 2 irf)(ove
determine in the same way that [21] is left with only one term
which is relevant with the excitation

(Pu[Fo| ) = (p-[&drol&STa-).

Separating the spin and orbital variables, we get

(Dy|F,| D) = —SHplérolEay.

[25]

When extended to the general cages,— q., we have

(Py|Fo| @) = =SXp|érdlila).

[26]

All the possible matrix elements dfb,|F,|®,) are listed in
Table 2.
Substituting(®|F,|®,) and(®D|F,|®.) into [9], we get

Podt,P,3,Pq = 2BH*S? E AgAnAnkAoL

1,J.K,L

X E(p“ 'ZIQ><|,J><p'|§k(rk)| ﬂq,)(K,L)
K

= 2pH*S* E E AOIAnJAnKA0L<p|I’Z|q>(I,J)

k 1LJK.L

X AP [ErITEA" ) - [27]

Equation [27] is a sum of atoik and each term refers to ode
only. In the same way we could wrig#,P, as a sum ok; then
the whole right-hand side of Eq. [4] could be rewritten as the sul
of k. According to Stone’s argumehteachkth term must be
independently gauge-invariant, and we could ghut r,, I’ = I
for the kth term; therefore, the whole expression is gauge
invariant. Since the second-order perturbation t&#’,P, is
usually negligible compared with the first-order perturbatiot
termsPy3¢,P,9¢,P,,> we omit the tediously long but unnecessary
treatment forP#,P,, and putl’ = |, directly for P,3¢,P,#,P.
The gauge-invariant expression fgff is then given by

“ See Egs. [70] and [71] in Section 4 of Stone’s pagdgr (
® See Section 6 of Stone’s papdy).(
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h”(n) 0 r>r
gzz: 2 — E ﬁ, [28] gk(rk) = {gk r< rkk’

n#0

whereé, is the usual spin—orbit coupling constant for atkhm

where Then [33] is replaced with

h” =2 Ao AL AKAL I7 , 2l Y T———
(n) IyJZKYL 0l JA K/M\oL % <p| k|q>(I,J) <p |§k(rk)| k|q > — §k<X{<p)|| k|XE<q)>- [34]
X AP |&rT ) - Substituting [32] and [34] into [28], we obtain

. Ve .
The f:alculat|on of”is usu_aIIy ba;ed on the calculation of the 97=2-2 2% 3 AgALA AL
matrix elements over basis functions of MOs,

n#0 1,JK,L
<p|l§|q> [29a] E gk(Xf(’p)“§’|X{<q)>(I,J)<X(kp’>|IﬂXI((q’))(K,L)
k,k’
o X E_E . [35]
(P’ &rI1 ). [29b] The relationship betweep, q andl, J is given in Table 1,

while that ofp’, q" andK, L is in Table 2.

o oy ) o .
Express the MOs in terms of a linear combination of atomic 9 andg” can be given by similar expressions.

orbitals,
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